• Neptune through two cosmic lenses: JWST vs. Hubble
    Why do these images of the same planet look so different? Let’s explore

    Color Contrast:
    Hubble captures Neptune in visible light—just like human eyes. That’s why it appears vibrant blue. That color comes from methane in Neptune’s atmosphere, which absorbs red light and reflects blue back to us.

    Infrared Eyes:
    The James Webb Space Telescope (JWST), on the other hand, sees in infrared light, which we can’t see. In its view, Neptune glows white with an icy, ghost-like appearance. That’s because methane absorbs most of the infrared light—except where high-altitude clouds bounce some of it back, making those areas stand out.

    And check this out – Neptune’s rings!
    JWST revealed Neptune’s faint rings with stunning clarity—better than we’ve seen since Voyager 2 zipped by in 1989. Hubble had a tough time spotting them due to their faintness and distance.

    The first Webb image of Neptune was released in September 2022, and it left astronomers in awe with its unmatched detail.
    Neptune through two cosmic lenses: JWST vs. Hubble Why do these images of the same planet look so different? Let’s explore Color Contrast: Hubble captures Neptune in visible light—just like human eyes. That’s why it appears vibrant blue. That color comes from methane in Neptune’s atmosphere, which absorbs red light and reflects blue back to us. Infrared Eyes: The James Webb Space Telescope (JWST), on the other hand, sees in infrared light, which we can’t see. In its view, Neptune glows white with an icy, ghost-like appearance. That’s because methane absorbs most of the infrared light—except where high-altitude clouds bounce some of it back, making those areas stand out. And check this out – Neptune’s rings! JWST revealed Neptune’s faint rings with stunning clarity—better than we’ve seen since Voyager 2 zipped by in 1989. Hubble had a tough time spotting them due to their faintness and distance. The first Webb image of Neptune was released in September 2022, and it left astronomers in awe with its unmatched detail.
    0 Comments 0 Shares 14K Views
  • Saturn Through Two Space Telescopes: Hubble vs. James Webb

    This stunning side-by-side shows Saturn like never before—captured by two of humanity's most powerful space telescopes.

    Top Image – Hubble (Oct 22, 2023):
    From 1.365 billion km away, Hubble reveals ethereal ring spokes, ghostly features that appear and fade with Saturn’s seasons. These massive, Earth-sized spokes are still not fully understood, though scientists believe they're caused by electrostatic interactions between Saturn’s magnetic field and sunlight.

    Bottom Image – James Webb (June 25, 2023):
    Webb’s first-ever near-infrared view of Saturn reveals the planet as strikingly dark, thanks to methane absorbing most sunlight in its atmosphere—while the icy rings glow brightly. This deep exposure also aims to detect faint moons and better understand the planet’s dynamic system.

    Together, these views showcase the beauty and mystery of Saturn—from visible light to infrared—and mark a powerful collaboration across decades of exploration. One planet, two perspectives, endless wonder.

    Credits:
    Top Image: NASA, ESA, STScI, A. Simon (NASA-GSFC)
    Bottom Image: NASA, ESA, CSA, STScI, J. DePasquale (STScI)

    #Saturn #JamesWebb #Hubble #NASA #ESA #JWST #Astronomy #SpaceTelescopes #RingedPlanet #CosmicWonders #InfraredSpace #HubbleHeritage #WebbTelescope
    Saturn Through Two Space Telescopes: Hubble vs. James Webb This stunning side-by-side shows Saturn like never before—captured by two of humanity's most powerful space telescopes. Top Image – Hubble (Oct 22, 2023): From 1.365 billion km away, Hubble reveals ethereal ring spokes, ghostly features that appear and fade with Saturn’s seasons. These massive, Earth-sized spokes are still not fully understood, though scientists believe they're caused by electrostatic interactions between Saturn’s magnetic field and sunlight. Bottom Image – James Webb (June 25, 2023): Webb’s first-ever near-infrared view of Saturn reveals the planet as strikingly dark, thanks to methane absorbing most sunlight in its atmosphere—while the icy rings glow brightly. This deep exposure also aims to detect faint moons and better understand the planet’s dynamic system. Together, these views showcase the beauty and mystery of Saturn—from visible light to infrared—and mark a powerful collaboration across decades of exploration. One planet, two perspectives, endless wonder. Credits: Top Image: NASA, ESA, STScI, A. Simon (NASA-GSFC) Bottom Image: NASA, ESA, CSA, STScI, J. DePasquale (STScI) #Saturn #JamesWebb #Hubble #NASA #ESA #JWST #Astronomy #SpaceTelescopes #RingedPlanet #CosmicWonders #InfraredSpace #HubbleHeritage #WebbTelescope
    0 Comments 0 Shares 25K Views
  • In a major breakthrough, scientists have revised the length of a day on Uranus—and it’s now 28 seconds longer than we thought.

    Thanks to over a decade of data from the Hubble Space Telescope, researchers have calculated that a full Uranian day lasts exactly 17 hours, 14 minutes, and 52 seconds.

    That may sound like a tiny change, but for planetary scientists, it’s a big deal.

    Until now, the only direct measurements came from NASA’s Voyager 2 flyby in 1986, which left lingering uncertainties—especially around Uranus’ magnetic poles. Those outdated rotation estimates made it nearly impossible to accurately track how the planet's magnetosphere behaves over time.

    To solve this, a team led by Laurent Lamy (Paris Observatory) analyzed Hubble’s ultraviolet observations from 2011 to 2022, tracking auroras caused by solar wind slamming into Uranus’ magnetic field.

    By following those glowing signals, they were able to pinpoint the magnetic poles and determine Uranus’ rotation period with unprecedented precision—even more accurately than we know Jupiter’s.

    That’s especially impressive considering Uranus spins almost completely sideways, making these measurements incredibly tricky.

    This refined rotation rate is crucial—it will help scientists build better models of Uranus’ interior, magnetic field, and future missions, including NASA’s upcoming plans to explore the ice giant in detail.

    RESEARCH PAPER:
    L. Lamy et al., “A new rotation period and longitude system for Uranus”, Nature Astronomy (2025)
    In a major breakthrough, scientists have revised the length of a day on Uranus—and it’s now 28 seconds longer than we thought. Thanks to over a decade of data from the Hubble Space Telescope, researchers have calculated that a full Uranian day lasts exactly 17 hours, 14 minutes, and 52 seconds. That may sound like a tiny change, but for planetary scientists, it’s a big deal. Until now, the only direct measurements came from NASA’s Voyager 2 flyby in 1986, which left lingering uncertainties—especially around Uranus’ magnetic poles. Those outdated rotation estimates made it nearly impossible to accurately track how the planet's magnetosphere behaves over time. To solve this, a team led by Laurent Lamy (Paris Observatory) analyzed Hubble’s ultraviolet observations from 2011 to 2022, tracking auroras caused by solar wind slamming into Uranus’ magnetic field. By following those glowing signals, they were able to pinpoint the magnetic poles and determine Uranus’ rotation period with unprecedented precision—even more accurately than we know Jupiter’s. That’s especially impressive considering Uranus spins almost completely sideways, making these measurements incredibly tricky. This refined rotation rate is crucial—it will help scientists build better models of Uranus’ interior, magnetic field, and future missions, including NASA’s upcoming plans to explore the ice giant in detail. 📄 RESEARCH PAPER: L. Lamy et al., “A new rotation period and longitude system for Uranus”, Nature Astronomy (2025)
    0 Comments 0 Shares 21K Views